The Beginnings of Gravitational Wave Astronomy

R. Weiss, MIT on behalf of the LIGO Scientific Collaboration

Hungarian Academy of Sciences Budapest, Hungary November 8, 2018

Gravitational waves

Einstein 1916 and 1918

- Sources: non-spherically symmetric accelerated masses
- Kinematics:
 - propagate at speed of light
 - transverse waves, strains in space (tension and compression)

•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	
•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	
•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•		•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•		•	•	•	•	•	•	

Gravitational waves

Einstein 1916 and 1918

- Sources: non-spherically symmetric accelerated masses
- Kinematics:
 - propagate at speed of light
 - transverse waves, strains in space (tension and compression)

•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	
•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	
•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•		•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•		•	•	•	•	•	•	

Michelson Interferometer Schematic and GW sidebands

propagation direction

MODULATION: Amplitude and Phase

The measurement challenge

 $h = \frac{DL}{L} \Box 10^{-21}$ L = 4km DL \Box 4x10⁻¹⁸ meters

DL \square 10⁻¹² wavelength of light DL \square 10⁻¹² vibrations at earth's surface

Kip Thorne

Advanced LIGO Fabry-Perot Michelson Interferometer Schematic

Initial LIGO Interferometer Noise Budget

Evolution of the initial detector 2001 - 2006

A clean non-detection

Advanced LIGO design noise budget

Criteria for transient detection

- The same waveform must be seen at the Louisiana and Washington sites within ± 10 msec
- The waveform at a site cannot be coincident with signals from the environmental monitors at the site
 - 3 axis seismometers
 - 3 axis accelerometers on the chambers
 - Tilt meters
 - Microphones
 - Magnetometers
 - RF monitors
 - Line voltage monitors
 - Wind speed monitors
- The waveform at a site cannot be coincident with auxiliary signals in the interferometer not directly associated with the gravitational wave output
 - Alignment control signals
 - Laser frequency and amplitude control signals
 - Approximately 10⁵ sensing signals within the instrument

Generic transient search

10

8

 time

6

4

0 50 г 2

Modeled search followed by C^2 cut

Results of O1 and O2 run announced June 1, 2017

Triple coincidence GW 170814

 $M_1 = 30$ $M_2 = 25$ $\Delta M = 2.7$

Localization on sky and distance

Neutron Star Tidal Distortion

L = 591

Binary neutron star spectroscopy

S.Bose, K.Chakravarti, L.Rezzolla, B.S. Sathyaprakash, K. Takami

Broad band kilonova spectra vs time

Villar et al arXiv astroph 1710.11576

Origin of the elements

Hubble constant measurement: Galaxy z and distance from GW amplitude

Localization with more detectors

Fairhurst 2011

(Mandic et al. 2017)

Cosmic Microwave Background Polarization B Modes

Gravitational Wave Spectrum

Supermassive BH coalescences

Isotropic GW background

sources

from unresolved

10⁻⁸

Frequency Hz

Massive BH coalescences

Small mass/BH infalls

White dwarf binaries in our galaxy

Space-based Interferometers

 10^{-4}

Compact binary coalescences: neutron stars and black holes

Asymmetric pulsar rotations

Ground-based Interferometers

 10^{4}

 10^{0}

LISA Pathfinder

Cosmic Microwave Background Polarization B Modes

Gravitational Wave Spectrum

Supermassive BH coalescences

Isotropic GW background

sources

from unresolved

10⁻⁸

Frequency Hz

Massive BH coalescences

Small mass/BH infalls

White dwarf binaries in our galaxy

Space-based Interferometers

 10^{-4}

Compact binary coalescences: neutron stars and black holes

Asymmetric pulsar rotations

Ground-based Interferometers

 10^{4}

 10^{0}

LIGO LIGO Scientific Collaboration

LSC

SPARE SLIDES

VOLUME 23, NUMBER 8

Quantum-mechanical noise in an interferometer

Carlton M. Caves

W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (Received 15 August 1980)

Squeezed light in gravitational wave interferometers

E.Oelker, T. Isogai, J.Miller, M.Tse, L.Barsotti, N.Mavalvala, M.Evans

Acoustic mode damper for test mass : reduce parametric instability

S.Gras, S. Biscans, M.Evans, L.Barsotti, P.Fritschel

Einstein 1916

$$A = \frac{\pi}{24\pi} \sum_{a,b} \left(\frac{\partial^3 J_{a,b}}{\partial P} \right)^{a}.$$
(21)
Würde man die Zeit in Sekunden, die Energie in Erg messen, so
würde zu diesem Ausdruck der Zablenfaktor $\frac{1}{c^4}$ hinzutreten. Berück-
sichtigt man außerdem, daß $x = 1.87 \cdot 10^{-x7}$, so sieht man, daß A in
allen nur denkbaren Fällen einen praktisch verschwindenden Wert
haben muß. "....in any case one can think of A will have a practically
vanishing value."

$$M \gg \frac{\int}{C^2} \frac{V^2}{C^2} = \frac{Gm}{Rc^2} \frac{V^2}{c^2} \qquad S_g = \frac{c^3}{16\pi G} \langle \dot{h}_+^2 + \dot{h}_x^2 \rangle - \frac{c^3}{16\pi G} = 7.8 \times 10^{36} \text{ erg sec/ cm}^2$$
1916 examples: train colllision

$$m = 10^5 \text{ kg}$$

$$v = 100 \text{km/hr}$$

$$T_{collision} = 1/3 \text{ sec}$$

$$R_{radiation} = 300 \text{km}$$

$$h \sim 10^{-42}$$

$$m_1 = m_2 = 1 \text{ solar mass}$$

$$T_{orbit} = 1 \text{ day}$$

$$R = 10 \text{ Kly}$$

$$h \sim 10^{-23} @ 1/2 \text{ day period}$$

$$Q = \frac{2\pi E_{stored}}{\Delta E_{l period}} \sim 10^{13} \text{ decaytime} \sim 10^{13} \text{ years}$$

h

GW 170104

c

F 403

"Solar Mass" Black Holes

Credit: LIGO/Caltech/Sonoma State (Simonnet)

Classes of sources and searches

- Compact binary inspiral: template search
 - BH/BH
 - NS/NS and BH/NS
- Low duty cycle transients: wavelets,T/f clusters
 - Supernova
 - BH normal modes
 - Unknown types of sources
- Triggered searches
 - Gamma ray bursts
 - EM transients
- Periodic CW sources
 - Pulsars
 - Low mass x-ray binaries (quasi periodic)
- Stochastic background
 - Cosmological isotropic background
 - Foreground sources : gravitational wave radiometry